Grade 7/8 Math Circles
 February 19th, 2024
 Graph Theory: Isomorphisms - Problem Set

For the first four questions consider the graph G below:

1. For the graph G answer the following questions:
(a) What is $V(G)$?
(b) What is $E(G)$?
(c) What are the neighbours and degree of each vertex in G ?
(d) How many components does G have?
2. Is G isomorphic to the graph H below? If yes provide an isomorphism if not explain why.

3. Is G isomorphic to the graph Q below? If yes provide an isomorphism if not explain why.

4. Is G isomorphic to the graph P below? If yes provide an isomorphism if not explain why.

For the next 4 Questions consider the isomorphic graphs G and Q below :

5. Is $f: V(G) \rightarrow V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why: | | v | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $f(v)$ | a | b | c | d | e | f | g | h | i | j |
6. Is $f: V(G) \rightarrow V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why: | v | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $f(v)$ | a | b | c | d | e | a | g | h |
| i | | j | | | | | | | | |
7. Is $f: V(G) \rightarrow V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why:

v	1	2	3	4	5	6	7	8	9	10
$f(v)$	a	h	i	d	c	b	j	f	g	e

8. Is $f: V(G) \rightarrow V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why:

v	1	2	3	4	5	6	7	8	9	10
$f(v)$	b	a	f	i	c	j	g	h	d	e

9. Are the following two graphs G and Q isomorphic? If yes provide an isomorphism and it inverse, if not then state why.

10. * The following two graphs G and Q not isomorphic. With one change how could you make these two graphs isomorphic? Prove that after the change the graphs are isomorphic.

11. * The following two graphs G and Q not isomorphic. With one change how could you make these two graphs isomorphic? Prove that after the change the graphs are isomorphic.

12. ${ }^{* * *}$ Below are the graphs P_{2}, P_{3}, and P_{4} from the family of Polygon Graphs, the polygon graph P_{n} is simply the regular polygon with n sides (P_{3} is a triangle, P_{4} is a rectangle, P_{5} is a pentagon etc):

(a) Draw and label the graphs P_{5}, P_{6}, and P_{7}.
(b) We define the complement of a graph G as \bar{G} to be a graph with the same vertex set as G, but has an edge set in which any edge that is not in G is an edge of \bar{G}. Below are the graphs of \bar{P}_{2}, \bar{P}_{3}, and \bar{P}_{4}. Draw and label the graphs of \bar{P}_{5}, \bar{P}_{6}, and \bar{P}_{7}.

(c) Which of $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$, and P_{7} are isomorphic to their complement, state which one(s) are isomorphic and provide and isomorphism.
(d) Besides the isomorphic graph(s) you found in part c is there any other graph in the Polygon Graph family which will be isomorphic to its complement? Explain your reasoning.
