

Grade 7/8 Math Circles February 19th, 2024 Graph Theory: Isomorphisms - Problem Set

For the first four questions consider the graph G below:

- 1. For the graph G answer the following questions:
 - (a) What is V(G)?
 - (b) What is E(G)?
 - (c) What are the neighbours and degree of each vertex in G?
 - (d) How many components does G have?
- 2. Is G isomorphic to the graph H below? If yes provide an isomorphism if not explain why.

3. Is G isomorphic to the graph Q below? If yes provide an isomorphism if not explain why.

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

4. Is G isomorphic to the graph P below? If yes provide an isomorphism if not explain why.

For the next 4 Questions consider the **isomorphic** graphs G and Q below :

5. Is $f: V(G) \to V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism 271 3 4 56 8 9 10 v then prove it, if not then explain why: ff(v)bja cdhieg

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

- 6. Is $f: V(G) \to V(Q)$ an isomorphism, where f is the following map? If it is an isomorphism then prove it, if not then explain why: $\begin{bmatrix} v & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & a & b & c & d & e & a & a & b & i & i \\ \hline f(v) & f(v)$
- 7. Is $f: V(G) \to V(Q)$ an isomorphism, then prove it, if not then explain why:

w	nere j	15	une	101	llOw	mg	ma	\mathbf{p}	11 10	12	an 150	Juiorpuisu
	v	1	2	3	4	5	6	7	8	9	10	
	f(v)	a	b	c	d	e	a	g	h	i	j	
W	here f	f is	the	fol	llow	ing	ma	p?	If it	is	an ise	omorphism
	v	1	2	3	4	5	6	7	8	9	10	
	f(v)	a	h	i	d	С	b	j	f	g	e]
where f is the following map? If it is an isomorphism												
												1

9. Are the following two graphs G and Q isomorphic? If yes provide an isomorphism and it inverse, if not then state why.

10. * The following two graphs G and Q not isomorphic. With one change how could you make these two graphs isomorphic? Prove that after the change the graphs are isomorphic.

11. * The following two graphs G and Q not isomorphic. With one change how could you make these two graphs isomorphic? Prove that after the change the graphs are isomorphic.

12. *** Below are the graphs P_2 , P_3 , and P_4 from the family of Polygon Graphs, the polygon graph P_n is simply the regular polygon with n sides (P_3 is a triangle, P_4 is a rectangle, P_5 is a pentagon etc):

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

- (a) Draw and label the graphs P_5 , P_6 , and P_7 .
- (b) We define the complement of a graph G as \overline{G} to be a graph with the same vertex set as G, but has an edge set in which any edge that is not in G is an edge of \overline{G} . Below are the graphs of \overline{P}_2 , \overline{P}_3 , and \overline{P}_4 . Draw and label the graphs of \overline{P}_5 , \overline{P}_6 , and \overline{P}_7 .

- (c) Which of P_2 , P_3 , P_4 , P_5 , P_6 , and P_7 are isomorphic to their complement, state which one(s) are isomorphic and provide and isomorphism.
- (d) Besides the isomorphic graph(s) you found in part c is there any other graph in the Polygon Graph family which will be isomorphic to its complement? Explain your reasoning.